Consistency and Efficient Solution of the Sylvester

نویسندگان

  • FERNANDO DE TERÁN
  • FROILÁN M. DOPICO
چکیده

We consider the matrix equation AX + X⋆B = C , where the matrices A and B have sizes m × n and n × m, respectively, the size of the unknown X is n × m, and the operator (·)⋆ denotes either the transpose or the conjugate transpose of a matrix. In the first part of the paper, we review necessary and sufficient conditions for the existence and uniqueness of solutions. These conditions were obtained previously by Wimmer and by Byers, Kressner, Schröder and Watkins. In this review, we generalize to fields of characteristic different from two the existence condition that Wimmer originally proved for the complex field. In the second part, we develop, in the real or complex square case m = n, an algorithm to solve the equation in O(n3) flops when the solution is unique. This algorithm is based on the generalized Schur decomposition of the matrix pencil A− λB⋆. The equation AX + X⋆B = C is connected with palindromic eigenvalue problems and, as a consequence, the square complex case has attracted recently the attention of several authors. For instance, Byers, Kressner, Schröder and Watkins have considered this equation in the study of the conditioning and in the development of structured algorithms for palindromic eigenvalue problems, while De Terán and Dopico have solved the homogeneous equations AX +X⋆A = 0 and studied their relationship with orbits of matrices and palindromic pencils under the action of ⋆-congruence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

On the solving of matrix equation of Sylvester type

A solution of two problems related to the matrix equation of Sylvester type is given. In the first problem, the procedures for linear matrix inequalities are used to construct the solution of this equation. In the second problem, when a matrix is given which is not a solution of this equation, it is required to find such solution of the original equation, which most accurately approximates the ...

متن کامل

ABS METHOD FOR SOLVING FUZZY SYLVESTER MATRIX EQUATION

The main aim of this paper intends to discuss the solution of fuzzy Sylvester matrix equation  

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

Gauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations

In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011